29 research outputs found

    Unsupervised Adaptation for High-Dimensional with Limited-Sample Data Classification Using Variational Autoencoder

    Get PDF
    High-dimensional with limited-sample size (HDLSS) datasets exhibit two critical problems: (1) Due to the insufficiently small-sample size, there is a lack of enough samples to build classification models. Classification models with a limited-sample may lead to overfitting and produce erroneous or meaningless results. (2) The 'curse of dimensionality' phenomena is often an obstacle to the use of many methods for solving the high-dimensional with limited-sample size problem and reduces classification accuracy. This study proposes an unsupervised framework for high-dimensional limited-sample size data classification using dimension reduction based on variational autoencoder (VAE). First, the deep learning method variational autoencoder is applied to project high-dimensional data onto lower-dimensional space. Then, clustering is applied to the obtained latent-space of VAE to find the data groups and classify input data. The method is validated by comparing the clustering results with actual labels using purity, rand index, and normalized mutual information. Moreover, to evaluate the proposed model strength, we analyzed 14 datasets from the Arizona State University Digital Repository. Also, an empirical comparison of dimensionality reduction techniques shown to conclude their applicability in the high-dimensional with limited-sample size data settings. Experimental results demonstrate that variational autoencoder can achieve more accuracy than traditional dimensionality reduction techniques in high-dimensional with limited-sample-size data analysis

    Explainable AI over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions

    Full text link
    Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.Comment: 29 pages, 7 figures, 2 tables. IEEE Open Journal of the Communications Society (2022

    Performance analysis of Multi-Phase cooperative NOMA systems under passive eavesdropping

    Get PDF
    A key feature of the non-orthogonal multiple access (NOMA) technique is that users with better channel conditions have prior knowledge about the information of other weak users. Given this prior knowledge, the idea that a strong user can serve as a relay node for other weak users in order to improve their performance, is known as cooperative NOMA. In this paper, we study the physical layer security of such a cooperative NOMA system. In order to reduce the complexity of the analytical process, the considered system in this paper has three users, in which the performance of the weaker users are enhanced by the stronger users. Given that there is an eavesdropper in the system that can hear all the transmissions, we study the secrecy performance of all the users. More specifically, we make an attempt to derive the ergodic secrecy capacity (ESC) and secrecy outage probability (SOP) of all the users. Due to the intractable nature of the exact analysis for the weak users, we provide the closed form expressions of the ESC and SOP for these users at the high SNR regime, while providing the exact analysis for the strongest user. Targeting on the optimality, we further reveal that better secrecy performance of the system is achievable through an appropriate power control mechanism. Finally, based on the analytical methodology of the three-user cooperative system, we provide insightful observations on the performance (in terms of ESC and SOP) of a multi-phase cooperative NOMA system with N users at the high SNR regime. Through rigorous numerical simulations, we verify the correctness of our analytical derivations under different practical scenarios while providing evidence of achieving optimal secrecy performance with the proposed power control scheme.acceptedVersionPeer reviewe

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF
    corecore